for uses related to text and data mining, AI training, and similar technologies

Response to: 'Anti-Ku syndrome with elevated CK: association with myocardial involvement in systemic sclerosis' by Campochiaro *et al*

We thank Campochiaro *et al* for their interesting comment¹ on our work in which we used hierarchical clustering on principal components to define clinically meaningful subgroups of patients with anti-Ku antibodies.²

Among a bi-centric cohort of patients with systemic sclerosis (SSc), Campochiaro *et al* identified four patients with anti-Ku and retrospectively reviewed these cases.

All patients had increased creatine kinase (CK), three (75%) of whom had interstitial lung disease (ILD). These findings support our observations according to which anti-Ku patients with elevated CK are at risk of ILD.

Of particular interest, Campochiaro *et al* proposed that myocarditis could further represent a specific feature of anti-Ku patients with elevated CK given that all of their four anti-Ku SSc patients had cardiac magnetic resonance (CMR) imaging established myocarditis according to Lake Louise criteria. Two (50%) had heart failure while the remaining two had subclinical presentation. By contrast, in our cohort, one anti-Ku patient had heart failure with positive CMR (2% of all anti-Ku patients and 7% of anti-Ku patients with elevated CK).

Comparability between the Campochiaro et al's study and our study is limited however since: (1) Campochiaro et al studied

patients with SSc and all of their anti-Ku patients were diagnosed with myositis. The association of these two conditions has been associated with a high risk of myocarditis per se.^{3 4} By contrast, only two (5%) of our anti-Ku patients fulfilled the ACR/EULAR criteria for SSc and only one also fulfilled the EULAR/ACR criteria for myositis; (2) Campochiaro *et al* performed CMR in all patients with increased serum troponin T levels, an enzyme whose serum level is increased in myositis patients irrespectively of the presence of myocarditis.⁵ By opposition, our patients underwent CMR only when clinical signs of myocarditis were present.

To further address the interesting point raised by Campochiaro *et al*, we conducted an extensive review of the literature. The inclusion criteria were original articles in English pertaining to anti-Ku in which cardiac manifestations were defined and prevalence was directly mentioned or easily calculated from the available data. Pubmed and Web of Science were searched using 'anti-Ku', 'auto-antibodies', 'myositis', 'systemic sclerosis' and 'myocarditis'. Reference lists of relevant papers were also reviewed. Results and ensuing meta-analysis are shown in table 1.

Nine articles were included, reporting the prevalence of cardiac involvement in a total of 198 anti-Ku patients with huge variations (0% to 100%). The meta-analysed prevalence of cardiac involvement in anti-Ku patients was 23% (95% CI 9% to 46%). A significant heterogeneity was also found (p<0.001), likely resulting from the heterogeneous screening and definition

 Table 1
 Prevalence of cardiac involvement in patients with anti-Ku autoantibodies and controls

First suther year of	Studied population	Patients assessed for heart involvement, n	Definition for heart involvement	Prevalence of heart involvement, n/total (%(95% CI))		Risk of heart involvement,
First author, year of publication				Anti-Ku patients	Control patients	OR (95% CI)
Parodi, 1989 ⁷	Any CTD	3	Abnormal ECG, echocardiogram, chest X-ray film, (depending on the patients)	1/3 (33)	No control group	-
Hausmanova, 1997 ⁸	Myositis	50	Palpitation	3/7 (43)	18/43 (42)	1.04 (0.21 to 5.24)
Rozman, 2007 ⁹	SSc	52	Palpitation or conduction block or abnormal diastolic function or reduced ventricular ejection fraction*	3/14 (21)	8/38 (21)	1.02 (0.23 to 4.57)
Rodriguez-Reyna, 2011 ¹⁰	SSc	60	LVEF <45% or pericarditis by echocardiogram or CMR, or arrhythmia requiring treatment, or conduction defect	3/6† (50)	4/54‡ (7)	12.50 (1.88 to 83.3)
Lakota, 2012 ¹¹	Any CTD	73	Palpitations, conduction blocks, abnormal diastolic function	14/73 (19)	No control group	-
Cruellas, 2013 ¹²	Myositis	222	Myocarditis or heart failure, as revealed by myocardial scintigraphy and echocardiogram examination	0/9 (0)	0/213	1.00 (0.00 to 21163)
Kaji, 2014 ¹³	SSc	127	Clinical evidence of symptomatic pericardial effusion, congestive heart failure, or an arrhythmia considered to be due to SSc requiring treatment	8/40 (20)	16/87 (18)	1.11 (0.43 to 2.86)
Spielmann, 2019 ²	Any CTD	42	Clinical congestive heart failure and positive CMR	1/42 (2)	No control group	
Campochiaro, 2019 ¹	SSc	Not reported	New onset cardiac signs and/or symptoms, raised troponin T and/or NTproBNP and positive CMR	4/4 (100)	No control group	-
Meta-analysis § -All studies, test of heterogeneity: p<0.001 (ι²=81.8%, τ²=1.91, H=2.34) Controlled studies, OR test of heterogeneity: p=0.226	_	-	-	22.7 (9.2 to 46.0) 22.4 (14.4 to 33.1)	- 8.5 (1.4 to 37.6)	- 1.60 (0.66 to 3.87)

(1^2 =29.3%, τ^2 =0.29, H=1.19) Result of meta-analysis are in bold.

CMR, cardiac magnetic resonance; CTD, connective tissue disoders; LVEF, left ventricular ejection fraction; SSc, systemic sclerosis

^{*}For each definition, the highest prevalence reported was taken into account.

[†]Sample numbers are derived from the 10% prevalence in the whole cohort.

[‡]Sample numbers are derived from the 90% prevalence in the whole cohort).

[§]Result of the random effect (with a constant continuity correction of 0.5 for analysis of proportions and "treatment arm" continuity correction for pooling ORs).

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

used for cardiac involvement; and/or from the heterogeneity of the studied populations.

Five studies were controlled (representing a total of 76 anti-Ku patients vs 435 anti-Ku negative patients). The meta-analysed risk of cardiac involvement was not significantly increased in anti-Ku patients vs anti-Ku negative patients (OR 1.60 (95% CI 0.66 to 3.87)).

The important comments of the Campochiaro *et al* study together with the above data highlight several crucial unmet needs for myocarditis in connective tissue diseases patients, namely:

- ► There is no widely accepted definition of cardiac involvement. Notably, the authors of the Lake Louise criteria warned that CMR criteria for myocarditis are based on expert consensus in light of the limited evidence of its performance compared with endomyocardial biopsy. 6
- ► The screening strategies as well as definition for cardiac involvement are heterogeneous among centres.
- ► There is a need for identifying biomarker(s) of cardiac involvement of which auto-antibodies could be useful toward this aim.
- ► The prognosis of patients with subclinical CMR myocarditis is currently unknown and whether such patients benefit from increased immunomodulation (vs its potential risks for the patient) is unanswered.

Future research agendas should address these points.

Lionel Spielmann , ¹ François Séverac, ^{2,3} Alain Meyer ^{4,5}

¹Service de Rhumatologie, Hôpitaux civils de Colmar, Colmar, France ²Service de Santé Publique, GMRC, CHU de Strasbourg, Strasbourg, France

³ICube, UMR 7357, équipe IMAGeS, Université de Strasbourg, Strasbourg, France ⁴Exploration Fonctionnelle Musculaire, Service de physiologie, Hôpitaux Universitaires

⁴Exploration Fonctionnelle Musculaire, Service de physiologie, Hôpitaux Universita de Strasbourg, Strasbourg, France ⁵Centre National de Référence des Maladies Auto-Immunes Systémiques Rares

Centre National de Référence des Maladies Auto-Immunes Systèmiques Rares de l'Est et du Sud-Ouest, Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France

Correspondence to Dr Lionel Spielmann, Service de Rhumatologie, Hospices civils de Colmar, Colmar 3072, France; lionel.spielmann@ch-colmar.fr

Handling editor Josef S Smolen

Contributors LS, FS and AM: substantialy contribute to the conception and design of the work; or the acquisition, analysis and interpretation of data for the work; draft the work or revising it critically for important intellectual content; approve the final version to be published; agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Commissioned; internally peer reviewed.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

To cite Spielmann L, Séverac F, Meyer A. Ann Rheum Dis 2021;80:e114.

Received 4 September 2019 Accepted 6 September 2019 Published Online First 20 September 2019

► http://dx.doi.org/10.1136/annrheumdis-2019-216070

Ann Rheum Dis 2021;80:e114. doi:10.1136/annrheumdis-2019-216095

ORCID i

Lionel Spielmann http://orcid.org/0000-0003-1057-6890

REFERENCES

- 1 Campochiaro C, De Luca G, De Santis M. Anti-Ku syndrome with elevated CK: association with myocardial involvement in systemic sclerosis. *Ann Rheum Dis*. In Press 2021;80:e113.
- Spielmann L, Nespola B, Séverac F, et al. Anti-Ku syndrome with elevated CK and anti-Ku syndrome with anti-dsDNA are two distinct entities with different outcomes. Ann Rheum Dis 2019;78:1101–6.
- Bissell L-A, Md Yusof MY, Buch MH. Primary myocardial disease in scleroderma-a comprehensive review of the literature to inform the UK systemic sclerosis Study Group cardiac Working group. Rheumatology 2017;56:882–95.
- Meyer A, Lannes B, Goetz J, et al. Inflammatory myopathies: a new landscape. Joint Bone Spine 2018;85:23–33.
- Lilleker JB, Diederichsen ACP, Jacobsen S, et al. Using serum troponins to screen for cardiac involvement and assess disease activity in the idiopathic inflammatory myopathies. Rheumatology 2018;57:1041–6.
- Ponfick M, Gdynia H-J, Kassubek J, et al. Cardiac involvement in juvenile overlap-myositis detected by cardiac magnetic resonance imaging. Int J Cardiol 2011;152:e25–6.
- 7. Parodi A, Rebora A. Anti-Ku antibodies in connective tissue diseases. Report of three cases. *J Am Acad Dermatol* 1989;21:433–5.
- Hausmanowa-Petrusewicz I, Kowalska-Oledzka E, Miller FW, et al. Clinical, serologic, and immunogenetic features in Polish patients with idiopathic inflammatory myopathies. Arthritis Rheum 1997;40:1257–66.
- Rozman B, Cucnik S, Sodin-Semrl S, et al. Prevalence and clinical associations of anti-Ku antibodies in patients with systemic sclerosis: a European EUSTAR-initiated multi-centre case-control study. Ann Rheum Dis 2008;67:1282–6.
- Rodriguez-Reyna TS, Hinojosa-Azaola A, Martinez-Reyes C, et al. Distinctive autoantibody profile in Mexican Mestizo systemic sclerosis patients. Autoimmunity 2011:44:576–84
- Lakota K, Thallinger GG, Sodin-Semrl S, et al. International cohort study of 73 anti-Kupositive patients: association of p70/p80 anti-Ku antibodies with joint/bone features
 and differentiation of disease populations by using principal-components analysis.
 Arthritis Res Ther 2012;14.
- Cruellas MGP, Viana VdosST, Levy-Neto M, et al. Myositis-Specific and myositisassociated autoantibody profiles and their clinical associations in a large series of patients with polymyositis and dermatomyositis. Clinics 2013;68:909–14.
- Kaji K, Fertig N, Medsger TA, et al. Autoantibodies to RuvBL1 and RuvBL2: a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis Care Res 2014;66:575–84.

2 of 2